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Numerical resonance artifacts have become recognized recently as a limiting fac-
tor to increasing the timestep in multiple-timestep (MTS) biomolecular dynamics
simulations. At certain timesteps correlated to internal motions (e.g., 5 fs, around
half the period of the fastest bond stretdhy,), visible inaccuracies or instabili-
ties can occur. Impulse-MTS schemes are vulnerable to these resonance errors since
large energy pulses are introduced to the governing dynamics equations when the
slow forces are evaluated. We recently showed that such resonance artifacts can
be masked significantly by applying extrapolative splitting to stochastic dynam-
ics. Theoretical and numerical analyses of force-splitting integrators based on the
Verlet discretization are reported here for linear models to explain these observations
and to suggest how to construct effective integrators for biomolecular dynamics that
balance stability with accuracy. Analyses for Newtonian dynamics demonstrate the
severe resonance patterns of the Impulse splitting, with this severity worsening with
the outer timestepAt; Constant Extrapolation is generally unstable, but the dis-
turbances do not grow witht. Thus, the stochastic extrapolative combination can
counteract generic instabilities and largely alleviate resonances with a sufficiently
strong Langevin heat-bath coupling)( estimates for which are derived here based
on the fastest and slowest motion periods. These resonance results generally hold for
nonlinear test systems: a water tetramer and solvated protein. Proposed related ap-
proaches such as Extrapolation/Correction and Midpoint Extrapolation work better
than Constant Extrapolation only for timesteps less thaty 2. An effective extrap-
olative stochastic approach for biomolecules that balances long-timestep stability
with good accuracy for the fast subsystem is then applied to a biomolecule using
a three-class partitioning: the medium forces are treatddidpoint Extrapolation
via position Verlet, and the slow forces are incorporate@€bpstant Extrapolation
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The resulting algorithm (LN) performs well on a solvated protein system in terms
of thermodynamic properties and yields an order of magnitude speedup with respect
to single-timestep Langevin trajectories. Computed spectral density functions also
show how the Newtonian modes can be approximated by using a;sinatie range
of 5-20 pSl. (© 1999 Academic Press

Key Words:molecular dynamics; numerical resonance; symplecticness; force
splitting; multiple timesteps.

1. INTRODUCTION: BIOMOLECULAR SIMULATIONS

With suitable governing force fields and integration protocols, computer simulations
the time evolution of large biomolecular systems can offer insights into molecular flexik
ity and thermodynamic processes. Yet, the relevance of simulation results to the biolog
community also depends on the physical timescales that can be simulated. Unfortuna
computer time is a serious handicap in this regard. Namely, the computational cos
biomolecular dynamics simulations is dominated by the frequent (once per timestep) e
uation of the potential energy function and its gradient for a large system. This evaluat
frequency cannot be lengthened arbitrarily. Reasonadxteracyrequires the timestep to
be a certain fraction of the period associated with the motion being resolved (e.g., |
than one tenth); numericatability dictates an upper bound for the timestep, beyond whic
trajectories become not only inaccurate but nonsensical; finedlgnancartifacts—more
erratic disturbances (rather than errors that increase monotonically with the timestey
selected timesteps related to the natural period of the system—Iimit the timestep du
their associated inaccuracies and/or instabilities (see below).

For typical single-timestep, unconstrained biomolecular simulations, these three reqt
ments are satisfied by stepsizes in the range of 0.5 to 1 fs. This in turn implies one to
million force evaluations just to span a nanosecond in the life of a biopolymer. As the syst
size grows, each such evaluation accountg¥oN?) interactions, wherd\ is the number
of atoms in the system. While approximations are made in practice to reduce the cos
long-range interactions, a nanosecond simulation of a solvated, medium-sized biomole
(around 20,000 atoms) can require several weeks of computing time on state-of-the-art
oratory workstations. A pioneering/Ls simulation of a small protein [1] was only possible
on a massively parallel Cray supercomputer employed in full for about 4 months.

Despite the large computational work of standard explicit integrators, the Verlet mett
[2] is often regarded as the “gold standard” of molecular dynamics simulations. Its sy
plecticness (i.e., volume preserving in phase space; see [3]) and time reversibility are !
suited for low-accuracy long-time simulations of Hamiltonian systems; in particular, Ver
trajectories display good energy conservation in comparison to nonsymplectic method

1.1. MTS Approaches and Resonance

Nearly two decades ago, multiple-timestep (MTS) methods were introduced [4, 5] in
effort to reduce the computational costs of dynamic simulations. MTS methods rely on
observation that the fastest components of the force, which limit the stepsize to 0.5-1 fs
on a relatively small spatial scale and hence have linear complexity. In contrast, the ef
to calculate the slow, long-range interactions increases with the square of the numbe
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particles. This spatial and temporal division can be exploited by using small timeateps (
to resolve the rapidly varying vibrational modes and larger time intervel} o update
the costly long-range forces.

In the early to mid 1990s, these approaches were further developed and applie
biomolecular dynamics [6-9]. Many of these developments relied on the rigorous e
general factorization formalism (disparate timescales, masses, etc.) of the -RESPA me
based on the Trotter factorization [6], a special case of which is the Verlet-l method |
These methods are symplectic [3] and time reversible, and thus are intended to simt
accurately Hamiltonian dynamics. The requirement for symplecticness dictates that
slow forces be incorporated vilmpulsesthat is, only at the time of their evaluation; hence
the namdmpulse-MTSThese force-splitting schemes also provide modest computatior
speedup (factors of 4-5) [9] over single-timestep trajectories since savings are realized
updating the long-range forces less frequently than the rapidly varying components.

Yet, the outer timestep (long-range force update interval) in Impulse-MTS cannot
lengthened as might be expected based on criteria of reasonable resolutionstifvthe
forces. Instead, it was found that the timescale oféis¢period limits the outer timestep to
somewhat less thahyi,/2 in standard protocols (i.e., half the period of the fastest motior
whichis around 10 fs). Though the first applications attributed these disturbances to ger
inaccuracies, they were later recognized as resonance artifacts [10, 11]. These artifacts
been analyzed in connection with implicit integration schemes such as implicit midpo
[12] and related integrators [13, 14], and with MTS (or force-splitting) schemes [10, 1.
Impulse-MTS schemes [6, 7] are particularly vulnerable to resonances since relatively le
energy pulses are introduced to the governing dynamics equations when the slow fo
are evaluated. These large pulses in turn lead to incorrect physical behavior of the sys
such as overstretching and/or breaking of bonds [12, 14]. The earlier extrapolative fol
splitting alternatives were abandoned because of their noted energy drift (a consequen
nonsymplecticness).

1.2. A Stochastic MTS Approach

Barth and Schlick have recently developed an alternative nonsymplectic, stochastic
proach termed LN [11, 15] that combines force splitting via extrapolation and stocha:s
dynamics to overcome this resonance barrier. This combination succeeds, as demons
on proteins [15], because extrapolation alleviates the severe resonances of the impulse
ment, and the Langevin heat bath counteracts the instabilities (or energy drift) character
of extrapolation.

Of course, these additional terms change the nature of the dynamics. Though str
speaking, “fictitious dynamics” is generated by this approach, it is expected that the con
urational states are sampled with Boltzmann probabilities. Hence the stochastic metho
described here sample configuration space and are useful for determining thermodyn.
and structural information; they should not be used to compute dynamic properties suc
rate constants.

The simple Langevin formulation used in LN mimics molecular collisions of a biomole
cule coupled to a heat bath. The friction is related to the fluctuating random force throt
the fluctuation—dissipation theorem; together, these terms are used to maintain the
equilibrium for the system. By choosing the Langevin frictional constaiais small as
possible, just sufficient to ensure numerical stability, we also suggested how to minin
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the effects introduced by the stochastic terms, not present in pure Newtonian formulat
[11, 15]. In practice, setting § ¥ <50 ps* has been suggested in these works.

The long-time stability of the scheme yields speedups of an order of magnitude o
reference simulations [15]. These physical and computational properties are advantag
in numerous applications of biomolecular simulations that address the critical sampl
problem (see, for example, the Broyde and Hingerty article in this volume [16]); only apf
cations that aim at specific kinetic measurements such as rates of conformational transi
demand accurate Newtonian integrators. Moreover, it has long been recommended that
tiple, shorter dynamic trajectories (started from uncorrelated initial states) be used ra
than a single long trajectory for improved statistics on sampling and thermodynamics du
the inherent chaos of biomolecular dynamic simulations. Karplus and co-workers rece
demonstrated not only that an individual 5-ns trajectory of a protein (crambin) sample
fraction of conformational states generated by 10 shorter 120-ps runay#ragestruc-
tural and dynamic properties over the 10 trajectories differ from those obtained from e
run and, moreover, thisnsemble averagesembles the X-ray structure most closely [17].
Clearly, efficient sampling approaches are critically needed for macromolecular studie:

1.3. Resonance Analyses

In this work, theoretical analyses are developed for various force-splitting strategies
molecular and Langevin dynamics to explain these resonance observations. More impor
the analyses offer guidelines for constructing effective biomolecular integrators that bala
stability with accuracy given the pragmatic dilemma mentioned above. The linear analy
started in [11] for a one-dimensional (1D) system were based on the symplectic E
method. Here we base derivations on the Verlet discretization [2] and compare reson:
artifacts of Extrapolation versus Impulse force splitting for both Newtonian and Lange\
dynamics. Numerical experiments are also performed for nonlinear systems.

Analyses demonstrate the severe resonance patterns of the Impulse splitting, with
severity worsening with the outer timestept; the general instability of Constant
Extrapolation is also demonstrated, but with disturbances that do not gromAwifrhese
resonance patterns generally extend to Langevin dynamics, but stochasticity for the ex
olative treatment can succeed in counteracting generic instabilities and largely allevia
resonances with a sufficiently strong heat-bath coupling Estimates for, are derived
here based on the extreme motion periods associated with the fast and slow timescale

We also propose related approaches such as Extended Extrapolation/Correction C
Leap Extrapolation, and Midpoint Extrapolation in an attempt to combine the short-times
accuracy of the Impulse treatment with the large-timestep stability of Constant Extrapc
tion. Unfortunately, these variants do not appear to have any practical value over the
standard cases on their own right; they can, however, improve the accuracy of Constan
trapolation over timesteps less th&mn/2. This finding is exploited to balance short-time
accuracy with long-time stability in LN by relying oklidpoint Extrapolation(via posi-
tion Verlet) for the medium forces and restricting the medium timestdp, to less than
Tmin/2, and treating the long-range forces®@gnstant Extrapolatiofil5]. Performance of
these variants also highlights the limitations of the 1D linear analysis and emphasizes
requirement for analyzing multidimensional linear models and experimenting on nonl
ear models. Higher dimensionality combined with nonlinearity only aggravates resona
disturbances.
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Results also demonstrate that force-splitting approaches are more effective for syst
with disparate timescales. A larger system with a greater spread of relevant motion timesc
is more amenable to force splitting because, for example, in an extrapolative/Langevin
proach the magnitude of the instability or disturbance is proportionghitg Tmax the ratio
of fast period to slow period. The smaller this ratio the milder the instability. Indeed, tl
resonance sensitivity of Impulse-MTS for both Newtonian and Langevin dynamics and
long-time stability of the Langevin/extrapolative approach is demonstrated for a solva
protein. We also find that stochasticity delays the first occurrence of resonance in Newtol
Impulse-MTS from half the period to the period.

1.4. Outline

In Section 2 we detail the 1D linear model problem and the basic procedure used
Newtonian and Langevin analysis based on the velocity Verlet integration. The 3D |
ear model (treated numerically) is also described. Experiments with the 3D linear mo
are important for ruling out methods that appear promising for the 1D case. In Sectio
we analyze Newtonian and Langevin dynamics behavior of the linear 1D model for 1
Impulse and Extrapolation force-splitting variants (both Constant and Midpoint Extrar
lation). Section 4 considers a more general framework for hybrid Impulse/Extrapolati
techniques, including Extrapolation/Correction (E/C), Extended Extrapolation/Correcti
Cycle (EE/CC), and Leap Extrapolation, the latter also with velocity corrections (“Le:
Extrapolation/Correction”). A three-class MTS variant combining Midpoint Extrapolatio
with Constant Extrapolation is then analyzed, to mimic the LN method.

Further results in Section 5 on nonlinear systems—a water tetramer and a solvz
protein—confirm our analyses regarding the sensitivity of Impulse treatments to resonan
even in the stochastic case, and the long-time stability of extrapolative stochastic variz
They also explain the good performance of Midpoint Extrapolation on a medium timesc
and hence its usefulness in the three-class LN approach. The LN solvated protein simul
is analyzed with respect to thermodynamic averages and computational gains (compar
single-timestep Langevin simulations), as well as spectral densities at two coupling par
eters. The spectral density functions show the accurate reproduction of Langevin mode
LN at a larger outer timestep and the reasonable approximation to Newtonian modes a
smally value (5 ps?).

Conclusions regarding resonance artifacts in force-splitting schemes and the stoche
extrapolation alternative are presented in Section 6. Much of the detailed numerical an
ses are collected in the appendixes. Readers interested in the main findings relevant tc
molecules are directed to the solvated protein subsection (5.2) and the summary (Sectic

2. LINEAR MODELS FOR MTS ANALYSIS

Alinear modelis a starting point for MTS analysis since the fast forces are near harmc
and oscillatory. For this reason, numerical experiments performed in conjunction with L
and its variants [18—20] have shown that, in a large number of systems of real interest
fast forces can be replaced by linear approximations, with good overall results, provided
the linear approximations are updated often. Still, a 1D linear model has limitations: beca
of commutativity, it does not capture multidimensional linear behavior. A comparison
results between the 1D and 3D linear models emphasizes this limitation.
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2.1. 1D Linear Model

2.1.1. Newtonian dynamicsConsider the simple 1D linear model problem used b
Barth and Schlick [15, 11]:

X=V
{\'/ = —(A+r2)X. (1)

The variablesX andV denote the scalar position and velocity, respectively, for a partic
of unit mass. This system can be considered a harmonic oscillator driven by a linear fc
with constantA = A; + A,. However, we set the scalaks « A1 to represent two motion
components differing in timescales.

The characteristic angular frequencies associated with the two components and the
motion are respectively

wi=+v/A1,  wa=+/A2, Q=+A. (2.2)

The associated characteristic periods are thus

2 o 2
=2 T=Z T1=Z (2.3)
w1 w2 Q

Sinceiy K A1, T1 < To = (/A1/22) Ty, the presence of two (largely different) timescales
motivates the use of force-splitting schemes. Weigednd A, so that the fast and slow
characteristic periods afle = 2 andT, = 10 (time units) and thus the resonances are easi
viewed.

2.1.2. Langevin dynamicsWe also consider the Langevin extension of the 1D linea
model

X=V
{\'/ = -1+ 12)X —yV + R(), @4

wherey is the friction constant. The random forBét) has a normal distribution described
by

(R1))=0, (RM)R(t))=2yksTs(t —t), (2.5)

whereT is the temperaturég is Boltzmann’s constant, arédis the Dirac function. Since
the modeled particle has unit mass, the mass is omitted from the autocovariance expre
above.

We also consider the 1D Langevin model problem

X=V
{\’/ = —(A1+ 22+ 23)X — ¥V + R(1), (2.6)

which emulates a three-class partitioning of the force, as in the LN method. The th
components correspond to fast, medium, and slow forces.
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2.2. Analysis of the 1D Linear Model

2.2.1. Newtonian dynamicsBarth and Schlick [15, 11] examined MTS schemes base
onthefirstorder symplectic Euler method. Here we formulate methods based on the Velc
Verlet discretization [2, 3]; this integrator propagates the velocities (at half steps) &
positions (at integral multiples of the timestap) of the system (2.1) as follows:

VHE =N %AX”

XML — XN 4 A7V (2.7)
Vn+1 — Vn+% _ EAXnJrl.
2

The superscriph refers to the numerical approximationsXfandV at timenAr.
The associated step-to-step propagation opedatpx”, V"} — {X"+1, v"*+1}is defined
by the equation

xmil [ 1 o]f1 ac][ 1 of[xn
Vn+l - —%A 1 0 1 —%A 1 Vn
Xn
= AVV(AT, A) I:Vn:| ’ (2'8)

where each matrix multiplication corresponds to one sweep through the (2.7) loop.
propagation matriy v (At, A) is symplectic and determines the stability of the method
It can be shown [11] that stability is achieved for

AT <2/V/A. (2.9)

This is the familiar linear stability requirement on the timestef@ ¢f (T =the period)
[20]. Throughout this work we assume that the (inner) timegtepobeys this stability
restriction.

The following interpretation of Velocity Verlet proves useful later [10]. Let

At?
0(At, A) =arcco 1—TA , G(AT, A)=

1 0
0 \/A( — (AN |
Then we factorAyy as

cosf  sind

Avv(A‘L', A) = G(A‘[, A) |:—Sin9 cosd

} G(At, AL

to emphasize similarity oA,y to a rotation matrix, a consequence of symplecticnes
(conservation of area in phase space). The physical angular freq@e Ey. (2.2)) is
numerically approximated by affective angular frequendg4, 13]

_ 0(At, A)
o AT

Qeff =Q+ O(ATd). (2.10)
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2.2.2. Langevin dynamicsWe analyze the stability and resonance independent of tl
random force (i.e.R(t) = 0), following [15, 11]). We assume that the inner timestep is suf
ficiently small (At — 0) to justify the asymptotic approximation. Equation (2.4) become

X4 yX+AX=0

(recall A = A1 + X5), and admits an analytic solution of the form

X _ = X(0)
X0) e taan [X9]. 21

where detf\, ) = 1. We only consider the underdamped oscillator cgge{(4A), since the
overdamped case is not relevant to biomolecules (the position becomes a sum of dar
exponentials, with oscillatory characteristics thereby lost). For the underdamped case
propagatorA, is

cogw,t) + 5 sin(w, t) L sin(w,t)
ALt A, y) = N _ . (2.12)
.1W(1+ig>$mwﬁ) cosw, 1) — 2= sin(w, 1)
where
2
w, = A-ﬁi. (2.13)

2.3. 3D Linear Model

Before testing MTS variants on nonlinear problems, we also consider numerical res
for a 3D linear model from Biesiadecki and Skeel [10] for three colinear particles (of u
mass) connected by springs of constdatandk,. The potential energy of this systems is

V(rira,r3) = 3ky (Ir2 — ra = 1% + 3ke (Ir3 — r2] — 12),
and the corresponding differential equation is

ki —ki O 0 0 O
X=—||=ki ki 0|+ |0 k —k| |X=Ki+K)X.
0 0 O 0 -k ko

Since the matricek; andK; are not commutative, the system cannot be reduced to thr
independent 1D models of type (2.1). The system has two fundamental frequencies,
/2Ky andw, = +/2k», corresponding to the nonzero eigenvaluek pandK,, respectively.
We choose the numerical valukes=2/2, k, = 7?/50 to reproduce the fundamental pe-
riodsT; =2 andT, =10 used in the 1D linear model above. See also Garcia-Arattita
[21] for a theoretical stability analysis of a linear multidimensional model.

3. IMPULSE VERSUS EXTRAPOLATION

We now examine the resonance/stability behavior of the Impulse and Extrapolation M
schemes (the latter in both Constant and Midpoint forms) applied to the linear 1D problem



82 SANDU AND SCHLICK

both Newtonian and Langevin dynamics. These results are considered graphically alonc
those for the 3D linear model.

3.1. Newtonian Impulse

Impulse-MTS evaluates the slow force componem (X here) at timestep4at that are
k times larger than thoseA) used for the fast component £, X). We refer toAt and
At =KkAt as theinner and theouter timesteps, respectively. Impulse Verl&vérlet-1" )
applied to the linear test problem (2.1) becomes

X0 = xn
VIO = yn — Ko, XN
For i=0:k-1

vii+s] — il — %Alx[i]
Xli+1 = X0 4 Agv[i+3]
v+ —y[i+3] _ At ) XO+1]

End

Xn+l — X[k]

v+l — Ik kATr)\-ZX[k]

(Here the superscripts in brackets denote the indices of the inner iterations.) One ste
this method advances the solution froitk A1) to (n + 1)(KAT).

To express the associated propagation maigxfor Impulse-Verlet we first introduce
the “impulse” matrix

Pv(AT, A, K) 10
\Y T, A2, = - .
e, 1

The propagation matrix of Impulse Verlet can then be expressed as
A (AT, A1, A2, K) = Piv(AT, 22, K) Ayv (AT, 1) Py (AT, 12, K). (3.1)

The determinant oAy is one since each of the matrices on the right hand side of (3.1) h
unit determinant.

A full theoretical analysis of the resonance is presented in Appendix A. The conclus
is that resonant spikes appear neailtiples of the fast (effective) half peri@hd their
amplitude increasewith the outer timestep.

3.1.1. Resonance analysisNumerically computed eigenvalue magnitudes are shown i
Fig. 1, as functions of the outer timesteps. Recallthandx; in (2.1) were chosen to yield
a fast period of 2 time units and a slow period that is five times larger and thereby facilit
the viewing of resonances. We see that the resonant spikes appearét tifenteger
multiples of the fast half periodh{T;/2). The amplitude of the resonant spikes increase
linearly with the outer timestep; furthermore, the spikes become wider.

For the 3D linear model, Fig. 2 reveals for Impulse Verlet resonant spikes at odd multip
of the fast half period as expected; however, the other resonant spikes do not appear at
multiples of the fast half period, but approximatelykatr = 1.6 and 3.2, a behavior not
predicted by the 1D model. For sufficiently large outer timesteps the method is unstabl
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FIG.1. Eigenvalue magnitudes forthe linear 1D test problem with= 0.001,T; = 2, T, = 10 for Newtonian
(top) and Langevin (bottom) dynamigs= 0.162, of five methods, all shown versus the outer timestep.
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FIG. 2. Eigenvalue magnitudes for the linear 3D test problem for Newtonian (top) and Langewif,3
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3.1.2. Asymptotic interpretation.Consider now the case when the inner timestep i
very small, At — 0, while the outer timestepAt is kept constant. The Impulse Verlet
(and in generahny consistent impulse MTS method) for the 1D linear model becomes

X7 = xn

VIO =N KAy, X0

Solve for 0<t < kAT:

X =V, V=—11Xy, given

X (0) = X9, v(0) = VIO,

XMl = X (kA7)

VM=V (kA7) — KT X(KAT).

The above system can be solved analytically to obtain the propagfater 3 (X1, vntly/
a(X", V"), which has unit determinant and trace given by

trace( A%) =2 cog\/A1kAT) — sm(\fkm) (3.2)

This formula is similar to (A.1) in Appendix A, and the analysis developed there applie
The conclusion is thato matter which discretization is used for the fast subsystem in &
MTS framework the resonant behavior is simitarlong asAz is sufficiently small; thus,
resonance is inherent to impulse force splitting.

3.2. Langevin Impulse
The asymptotic Langevin propagator for Impulse MTS is
AUKAT, A1 o, y) =€ % Py(AT, 22, K ALKAT, A, ) Py (AT, 22, K),
and it follows that

det( P|Lang) = dei( PvALPv)=1

asPy "is the product of matrices of unit determinant. To determine the eigenval @88

and hence the spectrum Afv , we evaluate the trace of this matrix in the underdampe
case { < 2w;),

A .
trace P|"a”g) 2 cogwy, KAT) — KAT 2 sin(wy, KAT), (3.3)
(1)1,},
wherews , = /A1 — y2/4. This trace expression resembles (A.1), and a similar analys
holds. The conclusion is that, for most outer timesteps, the spectrtAﬁ'&?fconsists ofa
pair of complex conjugate eigenvalues (of modulus(expkAt/2)). For outer timesteps
close to multiples of the characteristic half period, or

KAT ~ (M — ,6)le (3.4)

whereT;, = (27) /w1, the spectrum oA becomes real; that is, the system exhibits
resonance artifacts. By substituting (3.4) into (3.3) and estimating the valgdsiofvhich
the trace is a maximum or a minimum (i.e., those values for which the instability occu

we obtain
-1
~—=(2 .
B~ M(Jr ) m
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This relation indicates the linear increase of spike width with the outer timestep. For t
value of 8, assuming.,/A1 is small, we estimate the amplitude of the resonant first spik
(m=1)as

A
e’% (1 + /21 2) .
A1
For stability,y must to be large enough to keep the first spike below one. This leads to
following lower bound ofy for numerical stability,

2/ 1 T A2 4 T A2
y > - Iog(1+ ﬁk_) = T—llog<1+ 7271) (3.5)

If instead of the asymptotic approximation we consider a numerical implementation,
resonance condition (3.4) involves the “effective half peri@@’yf /2. In general, the larger
the value ofy, the largerTy ,, is; thus resonance appears at larger outer timesteps. This
another advantage of using Langevin dynamics.

Numerically calculated eigenvalue magnitudes are shown in Fig. 1 for the 1D line
problem. For large enough values pf(for which the top of the first spike is less than
one) the method is stable. The valye=0.162 used here was calculated from Eq. (3.7
usingir; =2, A, = 12/25 (see below). The resonance patterns can be noted with growi
severity asAt increases, as in Newtonian dynamics.

For the 3D linear model (Fig. 2), Impulse force-splitting shows resonance patterns o
for larger timesteps, i.eAt > 3.5.

3.3. Newtonian Constant and Midpoint Extrapolation

An extrapolative MTS method also evaluates the slow component of thedtimes less
often than the fast force, but it incorporatessqproximatiorof the slow force at each inner
timestep. The simplest approximation is base@onstant Extrapolationwhich calculates
the slow forces at the beginning of the outer timestep. The altermdidgoint Extrapolation
evaluates the slow component of the force at a coordinate vector that approximates
solution halfway through thét sweep; it is reasonable to expect that this variant migh
yield better resolution of the slow forces for certain protocols. When applied to the line
test problem (2.1), both schemes can be written as

XDl = xn
VIO —yn
X[El — {X[O] [Constant Extrapolation
X9+ (kAaT/2vO [Midpoint Extrapolatiof
For i=0:k-1

Vi3l = vl — A (5 X0 4, XTE
X041 = X111 4 Apvi+i]
i+ —y[i+3] _ A (3, X[+11 4 3, XIED)

End
XN+1 — x[Kl

Vn+1=V[k]-
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We now introduce the matrices

—IAT, 0

Ece(At, A1, A2) = 1. 3
—A‘L’)»z + ZA‘L' )\1)»2 0

—3AT%; —2kAT3h,

EmMe(AT, A1, A2) = ,
—Atho+ FAT3 ke —3KATZA 4+ FKATAAA,

for the Constant and Midpoint Extrapolation variants, respectively, and then express
propagator of Newtonian Extrapolation as

k—1
Au(AT, A1, 22, K) = Avv (AT, 1) + Y Avv(AT, 1) Bl AT, A1, 22),  (3.6)
j=0

wherexx stands folCE or ME (Constant and Midpoint Extrapolation, respectively).

3.3.1. Resonance analysisThe analyses of the Constant and Midpoint Extrapolatior
methods are presented in Appendixes B and C, respectively. The main conclusion is the
Constant Extrapolation resonant spikes @ateredaround odd multiples of the effective
half period, withamplitudes independent of the outer timegiBapproximately H A,/A1.

For Midpoint Extrapolation, resonant spikes occur for outer timestkse tg but smaller
than, odd multiples of the effective half period, but thmplitudes increase with the outer
timestepas Impulse-MTS. Both methods are unstable for nonresonant timesteps and
require a stabilizing technique (e.g., a weak coupling to a heat bath) to guarantee nume
stability (and avoid systematic energy drifts) for timesteps that are not small.

The numerically computed eigenvalue magnitudes in Fig. 1 show that Constant Extra
lation is generally unstable. The resonant spikes appear around odd integer multiples o
fast half period in Ty /2) but their amplitude is constant, regardless of the outer timeste
The bottoms of the extrapolation spikes have magnitude unity. For Midpoint Extrapolati
Fig. 1 shows, in contrast, resonant spikes of increasing magnitude. The same generic i
bility between spikes is seen as for Constant Extrapolation, but for small outer steps (
than one effective quarter period) this instability is very mild.

For the 3D linear problem, both methods are also unstable (Fig. 2), but the instability
be alleviated through stochasticity (see below). The instability of Midpoint Extrapolatic
at small outer steps is again milder than that for Constant Extrapolation.

3.3.2. Asymptotic interpretation.The analysis for the 1D linear model for Constant
Extrapolation is collected in Appendix B, and for Midpoint Extrapolation in Appendix C
We conclude that any consistent integrator with sufficiently small displays similar
resonance patterns: with Constant Extrapolation spike amplitudes are independént of
but with Midpoint Extrapolation they increase wittt.

3.4. Langevin Constant and Midpoint Extrapolation

Any method that discretizes the Langevin equation with Constant and Midpoint Extre
olation approximates (for smallr) the asymptotic system

X 4+ yX 4+ 11X + A XIE =0,
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for 0<t <kAr and X(0) = X, X(0) =V?°, where X!E! was defined for each scheme in
the algorithm above. The solution has the form

[ X(KAT) }

= e 2 AL9a(t 31 s, ) X’
V(kA'L') - ek s N1y A2, )/ )

VO

where the subscriptx again refers to the method-dependent matrix for Constag) (
and Midpoint ME) Extrapolation. LettingS= sin(wy,, kA7) andC = cogw1 ,kAT), we
express the propagatat2"®® for Constant Extrapolation as

(1+2)(c+yL8) - e =

Langa : Ly t

E (kAT, )"ls )"2’ V) = 2 )
—on,(142) (1+ 45—5)5 R

and for Midpoint Extrapolation as

>R
SIS

kar( S | c—e"%")

22 ¥S \ _ lept S
Langa (1+ kl) (C + 2w1,y> Me : w1,y + 2

AME

—on, (1+2)(1+ Z)s  C— 2+ k(14 2 )s

2
1y 2(1)14/ 1

For Constant Extrapolation, “resonant” outer timesteps satisfy ~ (2m+ 1Ty, /2; the

propagator exp-ykAt/2) ALY9? has two real eigenvalues,

_rkat _ykar A
n=—-e 2, rIy;=—e 2 ——=(l+e >

Thus, the lower points of each spike lie on the curve(exgt/2), and the amplitude of the
spikes is approximately,/A; (1 + exp(—ykAt/2)).

Unconditional stability is obtained if all the upper points of the spikes are less than c
in absolute value. This reduces to

_ ykar Ao [ _ykae 2/ A1 < )»2>
ez +=L(ez +1) <1 & >——log(1+2—].
)»1( ) v vr?+1 9 A

This is a slightly sharper estimate than that given in [15, 11], which was

Y = (2v/A1/m) log(1 4 242/A1).

However, numerical experiments suggest that, while qualitatively correct, neither estirr
is sufficient for stability; a practical lower bound (for the linear 1D problem) was empirical
found to be

2/ A1 )\2) 4 ( AZ)
> — " Jog{l+2—= )| = ——+——log(1+2—=), 3.7
V= Va2 -1 g( + Al TivVr2 -1 9+t Al 3.7)

a value for which the linear stability was confirmed numerically.
Interestingly, the Langevin formulation introduces a second family of resonances
outer timesteps equal to integer multiples of the characteristic fast period

At~ mTy,.
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For these values the propagator expkAr/2) ALY9? has two real eigenvalues,

_ rkar _ykar A _ ykar
r=e z, rh=e 2 +—(1—e 2 )

At these values the tops of the spikes lie on the curve-exp/2); the resonant spikes
are now below this curve. The amplitudes of the spikes in this case are proportiona
1— exp(—ykAt/2), and are clearly much smaller than at odd multiples of the fast perio
when they were proportional to-f exp(—ykAt/2).

For Midpoint Extrapolation, resonance occurs when the outer timestep is “near” an ¢
multiple of the fast half period, i.ekA7 ~ (2m+1— )Ty, /2, whereg is a small positive
number; the width of the spike is thgT; ,, /2. The propagator exp-ykAt/2) Ape®® has
two real eigenvalues,

1

yKAT A ykAt ykAT A 2 kAT
ro = et - —2(1+e‘kT) e <1+ —2) (V— +w1y> Tﬁn.

This implies that, at large outer timesteps, the method is less stable than Constant Extr
lation.

In Fig. 1 numerical results are shown for Langevin Constant and Midpoint Extrapolati
for the 1D model. The value gf was chosen according to (3.7). Note that the top of the firs
Constant Extrapolation spike—and hence all spikes—is not greater than one; the Con:
Extrapolation method is stable for the 1D linear model. Also note the second family
“small” resonant spikes appearing near multiples of the fast period, a family not pres
in Newtonian dynamics. For Midpoint Extrapolation the spikes are larger for large ou
timesteps.

For small 1,/11, relation (3.5) predicts the lower bound~ (2f2nkz)/(T1A1) for
the stability of the impulse method, while relation (3.7) gives the boumd(8ri2)/
(V72 — 1T1rq) for the stability of Constant Extrapolation. These two bounds have a
proximately the same magnitude.

The 3D linear model also shows resonance masking through stochasticity (Fig.
The valuey ~ 0.162 estimated by (3.7) stabilizes the Constant Extrapolation scheme
At =KkAT <Ty/2; the larger value ofy =0.3 renders a stable Constant Extrapolation
scheme up taAt =2.5. Larger values of will increase the stability range. The bound
given by (3.7) was derived to keep the eigenvalue magnituka at= T, /2 less than unity.
While in the 1D case, this estimate also ensures that the eigenvalue magnitudes for I
outer timesteps are then less than unity, the 3D problem requires ajatgenaintain sta-
bility beyondT; /2. Midpoint Extrapolation shows better stability for small outer timestep:s
followed by a sharp rise in eigenvalue magnitude; at large outer steps, it is less stable
Constant Extrapolation.

We suggest in conclusion from this linear analysis that Midpoint Extrapolation mig
be successfully used in a stochastic framework with small outer timesteps; Constant
trapolation appears successful with larger outer timesteps provided that the bath coug
parametey is strong enough to compensate for inherent instabilities of the method.
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4. IMPULSE/EXTRAPOLATION VARIANTS

To combine the benefits of small-timescale accuracy of the Impulse method with
longer-timescale stability of Constant Extrapolation, it is reasonable to consider a c«
bination: the slow force is kept constant during an outer timestdpner steps) but, in
an attempt to reduce the error introduced by this approximation, velocities are correc
at the beginning and at the end of each outer timestep. The correcting “impulses” h
magnitudes equal to the difference between the slow force values at the timestep endj
and the extrapolative value (tl§eterm below). These corrections are considerably milde
than the pulses used in the pure impulse treatment.

4.1. General Hybrid Framework

For the model problem (2.1), one step of Impulse/Constant Extrapolation using an
trapolation value of for the slow force reads

X[l — xn
VIO =N 4 Ko (), X0 - €)
For i=0:k-1
vii+sl — il 4 At (g X1 4 )
X[+ = X011 4 Arv[i+i]
v+ —y[i+3] + % (_Mx[i+1] + g)
End
xr‘l+1 — X[k]
V= VI 4 KT (XK - g)
If £ is constant throughout the integration, symplectic methods can be obtained (;
pendix D). In particular, the choice= 0 gives the Impulse Verlet method. A natural choice
for the extrapolation valué is the slow force evaluated at some po¥it (€ = —1,X*). In
this case this variant scheme reads

X0 = xn
VIO = yn — KBry, (X0 — X*)
for i=0:k—-1

vzl = vl — & (5, X0 4 2, %)
Xli+1 — 01 1 A7yli+i]
v+ —y[i+3] _ %(Alx[iﬂ] +A2X*)

end
xn+1 — X[k]

v+l Ik MT’AZ(XM — X¥)

The theoretical treatment of this hybrid family is facilitated by its resemblance to both i
pulse and Constant Extrapolation. We first define the following matrix (which correspor
to the choiceX* = X" and theExtrapolation/CorrectiorfE/C] method),

Ee/cv(AT, Ap, K) = o 0
C t! 27 .
B/ev K1y, 0
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Then the propagator associated with the family is

E|E(A‘L' )\1, )\2, k) ( + P|V(A‘L' )\2, k)AVV) EE/CV(A'[ )\2, k)
k—1 )
+ P|V(A‘L', )\2, k)( Z A&/V) ECE(A‘L', )\1, )\2)
j=0
=1 —Av+Pv(Ace—I).

The updating formula is then

xn+1 Xn X*
[Vnﬂ} = A (AT, A1, A2, K) [V”] + Ee(At, A1, 22, K) {V*} . 4.1)

The relevant propagatoA() depends on the choice ¥f. Holding X* constant throughout
the integration results in a symplectic scheme but th&pX* can be a poor approximation
to —A, X", Adjusting X* each outer timestep (as in E/C) leads to a better extrapolation, k
the nonsymplecticness is reflected in a systematic energy drift.

Another possibility is to updat¥* every p outer steps, wherp is a chosen integer. We
call this methodExtended Extrapolation/Correction Cyc{EE/CC). This hybrid makes
sense for situations where the rafig/A; is large; reasonable accuracy might then be
obtained for a largé& (=At/Ar), but this choice must be balanced with the limitlodue
to resonance considerations. The computational complexity of this EE/CC variant does
exceed that for E/C, since the slow forces are still evaluated once each outer timestep.

Finally, the “Leap Extrapolation” variant attempts to achieve a larger range of stabili
than Constant Extrapolation by symmetrizing the extrapolation process and using a two-
rather than a one-step extrapolation scheme.

We examine these hybrid methods in turn to determine whether they might work be
than pure Impulse and Constant Extrapolation.

4.2. Extrapolation/Correction (E/C)

The choiceX* = X" in the above scheme yields impulse velocity corrections after ea
outer timestep. This approach was considered by several groups to reduce the energy
of extrapolation [22, 23, 10]; the derivation in [10], in particular, was motivated by th
desire to approximate Verlet equivalence [7] for Constant Extrapolation. It has been nc
that correcting only for velocities improves numerical performance. This is the version
consider.

When applied to the 1D linear problem (2.1), E/C yields the following protocol:

X0 = xn
VO = yn
For i=0:k—-1
V2] = vin A (5 X004, x09)
Xli+1 — X[']+ArV['+2]
v+ —yli+3] _ ( X[u+1]+A2X[01>
End
Xn+1 _ xIK
v+l Ik kész(x[kl_x[O])
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The E/C propagator can be derived directly as
Ag,cv(AT, A1, A2, K) = (I + Eg/cv) Ace — Egjcvs (4.2)
or by using X*, V*] =[X", V" in Eq. (4.1) to obtain (omitting arguments for clarity)
Ae=I1+Pv(Ace— 1) =1 + (Egecv+ 1) (Ace — |) = Agjev. (4.3)

4.2.1. Resonance analysisWe defer the theoretical analysis to Appendix E. This analy
sis shows that resonant spikes are centered around odd multiples of the effective half pe
and that their heights increase almost linearly with the outer timestep. Between resol
spikes, there are additional (nonresonant) instabilities that increase with the outer times

Figure 1 shows the eigenvalue magnitudes for the E/C propagator; the method is gene
unstable and performs better than Constant Extrapolation (but not better than Impulse)
for small outer timesteps, say less tha4. Resonant spikes appearoatd multiples of
the fast half period only. Thus, as concluded by Barth and Schlick [11, 15], this hyb
approach seems useful only for small outer timesteps. Results of the LangeViraase
shown for reference in Fig. 1; but the method does not appear to have practical utility
its own right though we found it useful in a three-class MTS scheme (see below and in
water tetramer figure).

4.2.2. Asymptotic interpretation.The analysis developed in Appendix E for the 1D
model confirms the basic results—good behavior for outer timesteps less than one qu
the fast period and linearly increasing spike amplitudes.

4.3. Extended Extrapolation/Correction Cycle (EE/CC)
The EE/CC propagator fqu macrosteps is formally written &2z, and is defined by

Ageicc(AT, A1, A, K)P
p—1
= Av (AT, A1, A2, K)P + Z Av(AT, A, A2, K) Eig(AT, A1, A2, K) (4.4)
j=0

or equivalently

Ageicc(AT, A1, A2, K)P
p—1
=1+ AV(AT, 21, A2, K Py (AT, A2, ) (Ace(AT, 21, A2, K) = ). (4.5)
j=0

A complete theoretical analysis of the resonanceégfcc is possible for the 1D linear
model but complicated. We restrict our study to the numerically obtained eigenvalues.
In Fig. 1, the absolute values of the spectrumAet cc are plotted as a function of
the outer timestep fop=1 (E/C) andp =10 (EE/CC). The curve becomes flatter @s
increases, and tends to approximate the Impulse curve. Interesting resonance patterr

2The Langevin propagator of E/C is related to that of the Langevin Constant Extrapolation propagator by
Langa Langa nga

relation Ag cy (KAT, A1, A2, ¥) = (I + Egcv)Ace” — Egjev- Calculations show that the eigenvaluesNg’/cv
are resonant for botkAz = (2m+ 1)T, , /2 (large spikes) andAt =mT,, (small spikes).
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also be observed. We conclude that the method is useful only for small outer timest
and has no advantage over the other splitting variants. We report the Langevin behavio
EE/CC for reference in Fig. 1 for = 0.3, but do not consider the method further; additional
experiments substantiate this conclusion.

4.4, Leap Extrapolation

Leap Extrapolation is motivated by methods that “symmetrize” the force extrapolati
process [24] to obtain stable, long-time integrators for Hamiltonian systems. The na
“Leap” is appropriate for the two-step process: we evaluate the slow for¥é ahd then
advance the numerical solution frqié"~1, V"~1} to { X"+, V"*+1} while keeping the slow
force constant, at itX" value; in the next step we evaluate the slow forcex&t! and
advance the numerical solution frofiX", V"} to {X"*2, V"*+2} while keeping the slow
force equal to itsX"** value, and so on. When applied to the linear test problem (2.1), Le:
Extrapolation reads

X[O] — xn-1
V[O] :Vn—l
For i=0:2&k-1
V2] = vl ac (5 X004,
Xli+1 = X0 4 Azv[i+3]
V[|+1]_V[|+1] ( g XL+ _I_)\an)

End
Xn+l X[2k
Vn+1 V[2k]

We also consider a velocity-correcting version (“Leap Extrapolation/Correction”):

X[O] — anl
VIO = V=1 — kAT, (X — XM
For i=0:2&k—-1
vzl = vl Ax (5, X014, x0)
XU+1 = X0 4 Arv[”%l
vi+ —y[i+3] At (3, XU+ 4 2,XN)

End
XN+1 — X[2K]

Vn+l V[2k _ kA‘L’)\Z (X[Zk Xn)

The relevant propagator for the two-step scheme is written as

Xn+l Xn

\/n+1 Ee(AT, A1, A2, 2k) Av (AT, A1, Ao, Zk) A\YAL
Xn - I 0 anl
vn anl

It is straightforward to show that the propagator above has a determinant oflohe i6
sufficiently small.
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FIG. 3. Eigenvalue magnitudes for the Leap Extrapolation Method (left, Simple; right, Impulse Correctio
for the Newtonian 1D Linear Model (first row), Langevin 1D Linear=£0.162, second row), Newtonian 3D
Linear Model (third row), and Langevin 3D Mode} & 0.3, last row).

The numerically calculated eigenvalues are presented in Fig. 3 for both the 1D lin
and 3D linear models, Newtonian and Langevin dynamics. The non-corrected version |
top) for the 1D model exhibits no resonant spikes; the corrected version (right top) she
large resonant spikes near multiples of the fast half period and, in addition, small resor
spikes at odd multiples of the fagtiarter period As characteristic of impulse methods, the
heights of the spikes increase with the outer timestep.

Unfortunately, Leap Extrapolation shows a marked instability for the 3D linear mod
The Langevin extensions, also shown in Fig. 3 with= 0.3, reveal complex resonance
patterns. We thus discard this method, in addition to EE/CC, from further considerati
These hybrids do not appear to offer any practical benefits over Impulse and Cons
Extrapolation.

4.5. Three-Class Splitting by Extrapolation

Finally, to analyze a three-class extrapolative method as LN [20, 15], we consider
Langevin 1D linear model of system (2.6), where the random force is given by Eq. (2.
A stochastic extrapolative approach is motivated by the goal of long-time stability a
large computational savings rather than accurate Hamiltonian dynamics. In this cas
is advantageous to use a method that yields better accuracy than Constant Extrapol
for the medium force class to improve the accuracy on the medium timescale. Candid
include Extrapolation/Correction (see good behavior in Fig. ok T;/2), Impulse, and
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Midpoint Extrapolation. We have implemented Midpoint Extrapolation, though limited tes
also suggest that the other approaches are effective as laxig<a3; /4. Now we combine
Midpoint Extrapolation with Constant Extrapolation in a three-class splitting to obtain f
the 1D linear model (2.6) the discretization

X[0,0]zxn
V[0,0]zvn
For j=0:k2—-1
XIE = X001 4 (kyA7/2) VO]
For i=0:k1-1
x[i+3.0] = X001 4 (Az/2) V-]
VI = (VO] = Ag (2 X204 2, XL 4 X090 1 R)) /(14 y AT)
X0+301 — x[i+3.i] 4 (A7 2)vli+L0]

End(i)

X[0.i+1] — xIkLj]

VIO i+1] — /KL ]
End(j)

Xn+l — X[kl,k2]
Vn+l — V[kl.k2]

Here a triplet of stepsizegAt, Atn =kiAt, At =kyAtp,} is used to integrate the three
components of the force. Fpr= 0, the inner iterations reduce to Position Verlet rather tha
to Velocity Verlet.

For small inner timestepat — 0, the asymptotic approximation holds, as

Pin = AL+ %(AL — gAn/2) [

1 Atm/z}
l 9

0 0

whereA, is described in (2.11) and (2.12). Then the propagator matrix associated with
asymptotic approximation is expy At/2) A_n, Where

A [l . 10
i=0

Figure 4 shows the eigenvalues of this propagator for different outer timesteps for
chosen periods of; =2, T, =10, andT; =50 (At,, = 0.5 is used). For the smaller value
y =0.162 (left), the eigenvalues of the propagator are quite close to the theoretical val
exp(—y At/2) (showninthe dashedline). Forthe larger vatue 0.3 (right), one eigenvalue
does not decrease with larger outer timesteps. From here we conclude that smaller valu
y might give better averages atlarge outer timesteps. The fact thatthe propagator eigenv
are above their theoretical values means that the LN trajectory will produce a slightly hig
energy than the theoretical one. Numerically, we observe a slight rise of the temperat
However, LN is stable for very large outer timesteps.

5. FURTHER EXPERIMENTS

We now experiment with two nonlinear problems: a water tetramer, and the solva
protein bovine pancreatic trypsin inhibitor (BPTI). The purpose of the first model is
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FIG. 4. Eigenvalue magnitudes for the 1D linear model for a three-class Langevin extrapolative splitting w
y =0.162 (left) andy = 0.3 (right), At,, = 0.5, T; = 2, T, = 10, andT; = 50.

show that the Midpoint Extrapolation hybrid is successful, in the context of a stochas
framework, in removing the first resonant peak of the Impulse method and achieving be
accuracy than Constant Extrapolation for outer timesteps less than half the fastest pe
The purpose of the second example is to demonstrate an effective three-class stochast
trapolation strategy for biomolecules that combines Midpoint Extrapolation for the medit
forces with Constant Extrapolation for the slow forces.

5.1. A Water Tetramer

This test problem is borrowed from Schlick et al. [25], who simulated a flexible wat
droplet based on standard water potentials. The intermolecular and intramolecular fo
correspond to the slowly varying and rapidly varying components, respectively. The int
molecular potential consists of van der Waals and electrostatic terms:

—-A B
Einter(X) = Z (r—6 + m) + Z <QkQI ) '

oxygen pairgi<j) atom pairs(k<l) i

The variable denotes an interatomic distance. The parameters are set&255 (kcal/
mol) A8, B=6294x 10° (kcal/mol)A2, Qo=—-14.94 (kcal/mold)¥/2, and Q=
7.47 (kcal/mold) /2 (for oxygen and hydrogen atoms).
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The intramolecular potential considers bond-length and bond-angle terms for e
molecule:

Ena() = » <sl Y (b3 — b%)° + S(cos6) — cosd; ))2> :

molecules k=1,2

Hereb=1A is the equilibrium O—H bond length arl=arccog—1/3) = 109471 is
the equilibrium H-O-H bond angle. The paramet8rsS, have the value§, =94 kcal/
(molA%), andS, = 42 kcal/mol.

The initial coordinates and velocities were chosen as described in [25]. A minimt
energy configuration was found with the truncated Newton package TNPACK [26-2
followed by an equilibration of the structure at 300 K via a Langevin simulation. From
spectral analysis of the velocity autocorrelation function (as given by a Verlet simulatic
we measured that the two fastest frequencies in the system have the associated pe
T1~10.8 fs andT, ~ 21.8 fs.

The numerical experiments were performed with an inner stepsiae ef 0.25 fs and
different outer stepsizes for a total time interval of 30 ps. For each run the average
standard deviation of the total energy were recorded. Similar behavior was noted fol
inner timestep of 1 fs. The Verlet linear stability condition (2.9) for the intermoleculz
forces restricts the outer stepsizext6.6 fs. The random force is set at each inner iteratior
to satisfy the properties given in Eq. (2.5) as {s the mass of ator)

For i=1:N
dev=+/(2ykem;T)/(A7)
RX = dev- normal)
RY =dev- normal)
RZ =dev- normal)

End

Each call to the function normal() returns a different sample from a normal distributic
(with mean 0 and standard deviation 1); for each of khatoms in the system the three
Cartesian components of the random force are obtained by rescaling this distribution tc
desired standard deviation.

The results for Langevin Impulse with=20 ps* shown in Fig. 5 reveal a resonant
spike at an outer timestep value~eb.4 fs; for larger timesteps an energy increase due t
linear instability is seen. For Constant Extrapolation, the method is linearly unstable, wh
explains the slow growth of the mean energyMsncreases. However, no resonant spike:s
are present and the energy errors increase only slowly with increasing outer timestep. |
that the value of suggested by (3.7)—using linearly predicieés—is about 150 ps'. At
this value the energy stability would be much better.

The performance of the Langevin Extrapolation/Correction and Midpoint Extrapolatic
methods shows good energy preservation for small outer timesteps followed by mar
instability at largerAt. At At ~5.4 fs, a small resonance occurs. Better behavior tha
Constant Extrapolation for small outer timesteps can be explained by the second orde
consistency (inAt) of these hybrids. The EE/CC and Leap Extrapolation methods off
no benefits over these variants, as previously concluded: the former gives results simil;
those of Impulse splitting, though the first resonant spike at around 5.4 fs is smaller,
the latter yields marked instabilities beyond 4 fs [data not shown].
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FIG.5. Watertetramer energy means and deviations over 30-ps Langevin dynami@6,ps?, as a function
of the outer timestep for a fixed inner timestep of 0.25 fs.

These experiments thus show that hybrid methods like Midpoint Extrapolation a
Extrapolation/Correction can mask the first resonant spike of Impulse in a stochastic fra
work, but only Constant Extrapolation yields stability at larger outer timesteps.

5.2. Solvated Bovine Pancreatic Trypsin Inhibitor (BPTI)

We model the BPTI protein (892 atoms) in CHARMM [29, 30] version 25, solvated in €
crystallographic and 4401 bulk water molecules (14,275 atoms total). The solvated sys
was prepared by overlaying the protein atoms on an equilibrated bulk water system (c
prism of side 70&) and then extracting all solvent molecules that included oxygen aton
within 1.8 A of any heavy protein atom. This system was minimized by steepest desc
followed by CHARMM'’s ABNR minimizer. The final solvated system is a rectangula
prism of dimension 6& 47 x 47A3, modeled with periodic boundary conditions at a cutoff
distance of 1&. These interactions are truncated using group-based van der Waals poten
shift and electrostatic force-switch functions. The minimized system was heated to 30
in three successive 10-ps stages using Langevin dynamicg/witB0, 10, and 3 pst; a
similar procedure for setting the random force as described in the previous section is
in CHARMM. The heated system was equilibrated for 20 ps of Newtonian dynamics bef
production runs began.

The splitting procedure uses three classes and follows Ref. [15]. Namely, bol
length, bond-angle, and dihedral-angle terms are considered fast interactions and resol
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FIG. 6. BPTI energy means and deviations over 5-ps Newtonian dynamics (left), and Langevin dynam
y =20 ps? (right), as functions of the outer timestep for a fixed inner timestep of 0.5 fs and medium timestep
1fs.

At =0.5fs; local nonbonded forces (Withinfﬂ) are considered medium interactions and
resolved aiAt, =1 or 2 fs; and all other forces are classified as slow. The medium forc
are separated from the slow forces via a smooth force switching function with buffer
region; a larger buffer region worsens results. We found that this three-class partition
worked much better than a two-class scheme. A spectral analysis of this test problem
below) indicates that the fastest periods in the system are around 10 fs (associated with
stretches), 11 fs (C—H stretches), 19 fs (water H-O—-H bends), 24 fs, and above (var
bending nodes and heavy atom bond vibrations, such as C-C=a6{.C

For comparing resonance behavior between impulse and extrapolative variants, the
tem was integrated for 5 ps with a medium timestdg = 1 fs and various outer timesteps
for both Newtonian and Langeviry (= 20 pst) dynamics (Fig. 6). This smaller value of
Aty was used because Newtonian Impulse does not work wellAtjth= 2 fs and Langevin
Impulse was also worse at this setting.

Figure 6 shows how resonance appears for Newtonian Impulse~ab fs, as predicted
by linear theory; for larger outer timesteps, generic instability occurs, as expected.
Langevin/Impulse, we see that the first resonant spike at 5 fs is delayed: the integratic
stable for timesteps up to 6 fs, and a strong resonance signal emerges near 10 fs fo
y. Thus, stochasticity succeeds in strongly alleviating the 5-fs resonance for this comj
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TABLE |
LN Performance on Solvated BPTI,v =20 ps?, AT =05 fs, At,, = 2 fs, At Varied

At (T) (T = (TH3H¥? (E) ((E = (E)»Y2 Speedup
Ref. 2985 2.0 (0.67%) —34054.8 121.5 (0.36%) 1
2 300.6 2.1 (0.70%) —34079.4 145.2 (0.43%) 2.3
10 302.2 2.1 (0.69%) ~33929.0 130.3 (0.38%) 43
20 303.7 2.2 (0.72%) —33687.7 152.7 (0.45%) 6.6
50 302.1 2.1 (0.70%) —33722.8 160.6 (0.48%) 9.8
100 301.9 1.9 (0.63%) —33654.7 145.8 (0.43%) 11.7
200 301.7 2.2 (0.73%) —33450.7 142.2 (0.43%) 13.1

Note.The temperature and energy and their variances are shown, along with the speedup measured rela
the explicit Langevin trajectory in CHARMM ak <.

system though it did not for the water tetramer for the sam&he difference in ratios
between the extreme timescales (characterizex oy, ) for each system is a likely expla-
nation. Namely, for the solvated protein, this ratio is smaller (slower modes are present)
hence the instability amplitude is relatively small. The removal of the 5-fs resonance by
Langevin approach was also shown in [15]. For large outer timesteps, Langevin/Impuls
unstable, with marked resonances at multiples of 10 fs. The LN results, in contrast, are?
good for large outer timesteps: energy averages and variances are correct for all valu
At displayed.

In fact, we found that\t,, can be increased to 2 fs and to 200 fs without excessively
increasing the thermodynamic errors as measured with respect to a single-timestep Lan(
trajectory atAt = 0.5 fs. Results obtained with these settings are reported in Table | (s
also [15]) and in the remaining figures.

Figure 7, which presents the errors of the LN trajectory averages relative to the refere
trajectory for the various energy components and the temperature, shows that all rel:
errors remain below 3% foAt up to 200 fs.

Dynamic properties as a function pfare next examined. The spectral analyses of th
trajectories shown in Fig. 8 for twp values used data from the first 2 ps of the trajectory &
the outer timestep okt =192 fs sampled every 2 fs. (Very similar results are obtained fc
all outer timesteps examined, up to 200 fs.) The procedure involves computing the velo
autocorrelation time series for each atom in the system and then Fourier transforming t
to obtain a power spectrum for each atom; these spectra are then averaged over the p
atoms and over the water atoms separately for a global characterization of the motior
more detail, the sampled 2-ps trajectory yields velocity time séies . v} } for each atom
j in the system and each Cartesian coordinate (the subscript is the snapshot time in
We subtract the average quantity to yield

. o1
v|'<—v|'—va|', l=1,...,n,
N4

and produce the normalized velocity autocorrelation series covering the 2-ps interval &

Zn vjvj
i 2d=n2V Yi—pt1

al = — =1...,n/2
Zln =n/2 U|J vll P /

p
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FIG. 7. BPTI relative errors of LN A7 =0.5 fs, At,, =2 fs, At varied from 2 to 200 fs) with respect to the
reference Langevin trajectory at the single-timestep valudor y =20 ps.

This time series is then Fourier transformed to the frequency domain to obtain the (indi
ual) power spectra

n/2
A=Y "ald”  w=1...n/2
p—1

These spectra are averaged over the protein and water atoms sepaNgtelgnd Nya
below denote the total number of protein and water atoms, respectively):

Afff‘": Z A¢ju / Nprot, Agat: Z A(ju / Nwat, w=1....n/2

jeprot jewat

Not only dowe see from Fig. 8 that the LN spectra for the large-timestep trajectory are bai
distinguishable from the spectra obtained from the reference, 0.5-fs Langevin trajectory
observe that the Newtonian modes are smoothed by the stochastic treatment, as exp:
and that the smaller value pfused here leads to a better agreement between Newtonian
Langevin spectra. This effect gfis illuminated by Fig. 9, which compares the Newtonian
to Langevin (LN) spectra at twp values. Thus, ouy =5 and 20 ps! values, sufficient
for numerical stability, do not blur the internal signals grossly.

As for computational speedup, LN produces a factor of 13 for the largest outer times
(Table I). This is close to the asymptotic upper limit for the present system, since
computational work involved in the slow forces is already less than about 10% and, inste
the evaluation of medium forces has become the dominant computational burden. A fur
splitting of the medium forces, resulting in a generalization of LN to more than three class
might be useful to increase the speedup. Additional experiments for a different appro:
namely introducing the slow forces via linear extrapolation, show that this does not w
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FIG.9. BPTI spectra calculated over 5-ps runs for the protein (left) and water (right) atoms af thabees:
0 (by Velocity Verlet) and 5 and 20 p5(by LN; see text).
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well for outer timesteps larger than 25 fs. Our recent applications of LN to a larger solva
protein and a solvated DNA dodecamer show similar performance; speedup depend
the system size, protocol used, and on the geometry of the domain used to enveloy
macromolecule in the periodic-boundary-conditions protocol.

6. CONCLUSIONS

The numerical analyses and experiments reported here support the following conclus
(see also Table II).

1. Theintroduction of long-range forces by impulses results in severe resonances. Tl
resonances lead to inaccurate trajectories, limit the outer timestep in Impulse-MTS meth
and hence restrict the achievable computational gain of these variants with respect to sit
timestep methods. The amplitudes and widths of these resonant spikes increase witl
outer timestep. Linear analysis usefully predicts the first resonant timestep to be half
fastest period; beyond this threshold, more complicated resonance patterns can develc
seen from the 3D case). The 1D predicted values serve as good candidates for res
timesteps in nonlinear biomolecular systems (near multiples of half the fastest period,
5,10, 15fs, . .).

2. The incorporation of long-range forces by Constant Extrapolation leads to gene
instabilities (energy drift in practice) and resonances at odd multiples of half the fast
period, but the amplitudes of these disturbances do not grow with the outer timestep.
the linear 3D problem, as well as for general systems, the effects of generic instability se
to be stronger than the effects of resonance.

3. Splitting variants such as Extrapolation/Correction, Extended Extrapolation/Corri
tion Cycle, Leap Extrapolation, and Midpoint Extrapolation do not appear to have mu
practical utility in their own right over Impulse and Constant Extrapolation because th
can produce a complex array of resonances at larger outer timesteps. However, the val
Midpoint Extrapolation and Extrapolation/Correction yield better accuracy than Constz
Extrapolation on a timescale less than half the fastest period. They are thus good candic
for treatment of the medium forces in biomolecules, and this is exploited in the three-cl
LN scheme.

4. The results obtained for Newtonian dynamics generally extend to Langevin dynam
but a sufficiently strong coupling to the heat bath can stabilize the numerical solut
and dampen resonances. For the Impulse version, the rapidly increasing amplitude o
resonances makes it very difficult to eliminate these disturbances; Constant Extrapolz
is most amenable to this masking, with generic instabilities also eliminated. On the basi

TABLE Il
Resonance Summary for Splitting Variants

Method 1D resonance 1D stability Nonlinear behavior (Langevin)
Impulse mT,/2 Stable Resonant
Const. Extrap. 2m+1)T,/2 Mildly unstable Mildly unstable, nonresonant
Midpt. Extrap. 2m+1)T,/2 Increasingly unstable Good fart < T;/2
E/C 2m+1)T,/2 Increasingly unstable Good faxt < T, /2
EE/CC Irregular Increasingly unstable Resonant
Leap Extrap. None Stable Very unstable
Leap E/C mT,/4 Stable Good font < T,/4

Note. T is the fast periodAt is the outer timestep, and is an integer.
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linear theory, we suggest guidelines for choosing minimal coupling to the heat bath (optil
y) for the stochastic/extrapolative combination; for nonlinear systems, empirical tests
necessary and suggest the values 5-56 fi5].

5. While results of the 1D linear model problem provide useful resonance predictio
multidimensional linear models provide a stricter test of method feasibility. The limitatic
of the 1D linear model was emphasized through the Leap Extrapolation variant conside
here, for which the optimistic results for the 1D linear model were misleading.

6. The stability of the MTS method depends on the protocol used and the proble
For biomolecules, a three-class splitting works better than two classes, and systems
disparate timescales are more amenable for force-splitting integrators.

7. If long-timestep stability and computational speed are important factors, and ex
Hamiltonian dynamics is not required (i.e., rather, thermodynamic and conformatiol
sampling is the goal), an effective protocol for biomolecules is a three-class Lange
MTS scheme which uses Midpoint Extrapolation for the medium forces and Const
Extrapolation for the slow forces, like LN [15]. Results here showed the effectiveness
this approach for a solvated protein model: errors in energy components and temper:
are less than 3% (with respect to single-timestep Langevin trajectories) for timesteps u
200 fs; the speedup exceeds 10; and spectral Langevin modes approximate the Newt:
modes for the coupling parameteiin the range of 5-20 ps.

More work is needed to overcome resonance limitations in a Newtonian framework.
interesting avenue to examine rigorously is the use of a constrained formulation for
bond stretches in combination with the MTS protocol. Though the gap in the vibratiot
frequency between the heavy-atom bond stretches and the light-atom bending mod
not large [20], resonance disturbances can likely be pushed further if rigid water moc
are used. This strategy might also be used in the LN framework to increase the maxin
feasiblemedium timestefrom 2 fs; this modification should not degrade the resolutiol
quality of the medium forces but might improve the asymptotic speedup of the result
MTS protocol, since this value is dominated by the cost of the medium forces [15].

Given the formidable sampling problem, it appears that a pragmatic balance betw
accuracy and long-time stability is warranted in biomolecular simulations so as to bridge
gap between theoretical and experimental biophysics; the extrapolative stochastic appr
of LN analyzed here is one such compromise. See also the Sdhtliakreview in this
volume for further perspective [31].

APPENDIX A: LINEAR RESONANCE FOR IMPULSE SPLITTING

Tofurther analyze the resonances observed, déretg At, A1) = arccos(- At°r1/2)
and temporarily drop the arguments Bf, and G for simplicity. Then (3.1) can be
successively expressed as

Av(AT, A1, 22, K) = Pv(Ayy(AT, 21) Py
K

_ cog0) sin@) | ._q
= Pv (G[—sin(e) cos(e)}G ) Pv

_ cogkd) sin(kd) | ._q
- P'VG[—sin(ke) cos(k@)}G Pv-
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After some algebraic manipulations, we obtain

det(Ay) = 1,

kA‘L’)\.g (Al)

VvV )\1(1 — A‘[z)»l/4)

At a resonant timestep, a pair of complex conjugate eigenvalues (lying on the unit circ
becomes a real pair; hence, the condition for resonance (the same as the conditiol
instability) is

tracg Ayy) = 2cogkd) — sin(k9).

[tracg Ayv)| > 2.

There are two casesinwhich this occurs. For analysig detAt 1)/ (21/A1(1 — At2)h1/4))
(a quantity independent ).

Case 1trace(Ay) < —2. This is equivalent to

. ko . (ko ko
1+ cogke) — ka sin(kd) = 2 cog (;) — 2ka sm(E) cos(;) <0
or
ko 1

In particular, také /2) — +oo0 when
ko T
— =~ @2m+1-p)= m=0,1,2,...
5 2m+1-p8) > .1

(with 8 denoting a positive, small number). Sinte- »*" A1, from (2.10) we can rewrite
the above as

kAT

eff
w1

2m+1-— 2 Teff
%+2ﬁ< ”):(2m+1—,3);.

Thus instabilities appear for outer timesteps near odd multiples of the fast (effective)
period; sinces > 0 the peaks will be centered to the left of the effective half periodk; as
increases, the right hand side of (A.2) decreases, so instabilities will appear fordarger
hence the widths of the “resonant spikes” increase Wiibr Impulse Verlet.

To approximate the amplitude of the spikes in Case 1, note that at a resonant timest
ko ~ (2m+ 1— B)mr = cogmh) ~ —1, sin(md) ~ B,
which implies
trace Ay) =2 cogkd) — ka sin(kd) ~ —2 — kaBr.
The maximal eigenvalue is

tracg Aw) — \/trac Ay — 4 247
e raceAy) 2raCG{ V) %—1—k%— kaﬂ—i—kzaf ~ 1 Kkap.
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where the last approximation is valid for largeSince the nonresonant valuerof 1, the
amplitudes of the resonant spikes behave like

Ir| — 1~ kafBm.

Sincew« is independent ok and 8 increases only slightly with increasirlg the spike
amplitudes increase almost linearly wkh

Case 2tracg Ayy) > 2. After some algebraic manipulations, this condition is equivaler
to
ko
0> tan(2> > —ka, (A.3)

implying that

~m-pr, 0O0<p<g3,

MY

or equivalently
kAt ~ (m— BTN,

For smallk, (A.3) is satisfied only by small values 8f while for largek the right hand side
of (A.3) decreases antlcan take larger values. This too implies that the widths of resona
spikes increase witk. This instability appears for outer timesteps near integer multiples
the effective fast period (but slightly less tharTe").

To approximate the spike amplitudes for Case 2, note that near a resonance we hav
ko ~ (2m — B)r = cogked) ~ 1, sin(kd) ~ —fBr.

An argument similar to that used above provides a linear estimate for the increasing s
height withk for largek,

Ir| — 1~ kapBr.

APPENDIX B: LINEAR RESONANCE FOR CONSTANT EXTRAPOLATION

Linear instability, or resonance, appears also with Constant Extrapolation. Since for n
values of the outer timestep the spectrum®gg consists of a pair of complex conjugate
eigenvalues (in general not on the unit circle [15, 11]). When the outer timestep is clos
odd multiples of the fast half period the eigenvalues approach the real axis and eventt
become a real pair.

To illustrate, we first bring (3.6) to a simpler form by usifig= 0 (At, A1) = arccos(1—
At?)r1/2) and performing a change of basis. For simplicity, we temporarily omit tr
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arguments of the matric&s andE.

G(AT, M) Ace(At, A1, A2, K) G(AT, A1)

. K—1 . L
_ [ coske) sm(ke)] S l cos(j6) sm(Jf))l G-lEG

—sin(kd) cogkd) e —sin(jo) cogjh)

_ | coske)  sin(ke) +sin(k9/2) cog(!520)  sin(%526)
| -sinkd) coskd) | sin@/2) | —sin(5510) cog(k516)

We now introduce the quantities

a__Atzkl be (1= ATt211)(ATAL)

2 - - (L= A2y

= cotal 0 =tan ko
5= (é)’ V= (?)'

The trace and the determinant of the propagatgr can then be written as

@+bs —2)y? + (@5 —byy +2

trace Ace) = g2
1—a—bg)y? —-b 1
detAce) = 2LV

The discriminant of the characteristic equation Ay is then

2

trace Ace)? — 4 - det(Acg) = AT 022 (a1¥? + a2y + ),
where
o1 = (a+bg)* >0,
oy = 2a£(a+b) — 8(at + b) — 2b(a + bf),
a3 = (at +b)? + 8(a+ bg) — 16.

Resonance occurs for values ¥ffor which the quadratic function in (B.3)

(B.1)

(B.2)

(B.3)

is posi-

tive; since the dominant coefficient is positive, the function is positive whesn —oo or

¥ — 400, or when
ko T
— & (2 1—.
> (2m + )2

This is equivalent to

Teff
kAT ~ (2m + 1)%.

Note that, since both plus and minus infinity give resonance, the spikes will be cente

around odd multiples of the effective half period.
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ForkAt ~mTe" we havey ~ 0 and resonance appears if and only4f> 0. But for
At < TF one hagat +b)? = O(AT?), a= O(AT?), bt = —Az/A1 + O(AT), andag <0
follows.

To analyze the amplitudes of the resonant spikes for Constant Extrapolation, we def

. trace Ace) + +/trace Acg)? — 4 det Ace)
12 = .
: 2

Near resonanceg; — oo, implying
ri— —1, r, - —1+a-+ bég,

with both limits independent &f. This explains the remarkable fact that the spike amplitude
are independent of k for extrapolation methotlise smallest (in absolute value) eigenvalue
has a “peak” at-1, which is in excellent agreement with the numerical results of Barth ar
Schlick [15, 11]. The largest (in absolute value) eigenvalue has peaks at

INZIN 1—Ath 0
[ro] =1+ + Atho cotan —= .
2 V(1 - Atz /4) 2

For the limit caseAT — 0 we have
ar . cotar{ &) = At - cotan( YA 2 2
T- — = T- N — X =
2 2 Wt 1

A2
rl~1+2—.
Iral + n

and hence

The (nonresonant) peak value of the spectral radiussgfcan be estimated roughly as

ra| +r A
Ira |2|%1+72

p(Ace) = 5 v

This confirms the empirical relations of Barth and Schlick [15, 11] for the magnitude of tl
instability.

The nonresonance value fok r = m T can be readily obtained by noticing thiat= 0in
this case. Hence deéitg) = 1, trace Acg) = 2, andr; =r, = 1. Thisresultis also confirmed
by numerical experiments.

As for the asymptotic interpretation, for small inner timestaps— 0, any discretization
using Constant Extrapolation approximately solves the system

X
Y

_ \Y;
T =X — ApXO

for 0<t <kAt with X(0) = X°, V(0) = V°. This system has the analytic solution

X (KAT) X0
VO

_pa
V (kA7) = ACE(kA‘L', A1, A2)
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with
1
. (1+32)C-2 7S
CE(kAts )\‘ls )\'2) = )
-Va(1+2)s C
1
where

S=sin(v/A1kAT),  C= cos\/A1kAT). (B.4)

For determining the eigenvalues, we calculate

A A
trace Alg) = (2+ ﬁ)c - k_j

det(AZ) = 1+ %(1 o).

trace Arp)” — 4 det( Adg) = 4S|ﬁ<kaT) { 3 4(1 + i—j) cotarf (@)}

1

From here we see that the spectrum is real (which implies resonance) for
VAkA
cotar<12T> ~ 0,

i.e., for outer timesteps approximately equal to odd multiples of the fast half period,

kKAt~ (2m+1)—— _(2m+1)—

\/_

For these values of the outer timeste}§ has two real eigenvalues, namell and

—1— 2X,/X1. These eigenvalues do not dependkar, as noticed previously.
APPENDIX C: LINEAR RESONANCE FOR MIDPOINT EXTRAPOLATION

A derivation similar to the Constant Extrapolation case is possible; here we only pres
the asymptotic approximation. For small inner timestaps— 0, one Midpoint Extrapo-
lation step approximates the solution of the system

X
%

_ \Y;
T —AX — AXE

for0<t <kAt with X(0) = X% V(0) = V9, XE = X%+ (kAt/2)V°. This system has the
analytic solution

XO

VO

X (kA7)

_pAad
V (kA7) = AME(kAE A1, A2)
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with
(1+#)C—f Ls-Krk1-0C)

Aa (kA‘L’, )»1, )»2) =
ME ~Vi(1+#)s  Cc-Krizs

where we use® andC as defined in (B.4). For determining the eigenvalues, we calcula

A A kAT X
trace Ajg) = (2+ —2>C 2 At M2 g

Al A 2 VA
KAT As
det( A2.) =1 —1 C)— —-~=25
t{ Ave) + —( ) — 2 n

trace(A[‘i‘,”E)2 — 4det Ay )

1/ MKAT Ao K2AT2)2 JAkAT
= 4sirf — 41+ 22 - 2= "2 \cotarf| Y
. ( 2 xz Tn T e, ) T2

+ km\j—;_1 <2 + x2> cotar< */—km) }

For outer timesteps near odd multiples of the fast half period

~ T _ PN

whereg is a small nonnegative number, it holds that

AkA
cota %) R~ %T

and the spectrum is real. The two eigenvalues are (to first org@riil + kAt /A1 87 /2
and—1— 2xo/A1 — KAT(1 — Ao/A1)+/A187/2; this implies that the instability grows lin-
early with increasing outer timestep.

APPENDIX D: SYMPLECTIC HYBRID IMPULSE/EXTRAPOLATION METHODS

Consider the system

Vv

X
{V}z{—M1VE4xy—M1VEAXJ’

whereEgs(X), EF(X) denote the potential energies associated with the slow and the f
forces, respectively.
Split the system into its slow and fast components

X _ 0 V
{v]_[—MAVE4M]+[—M*VEAXJ

and apply Velocity Verlet to each of the above subsystems, in Strang order wittkéteps
andz, respectively. This means that one takés\a /2 step for the slow subsysteksteps
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with the stepsizeAt for the fast subsystem, and finally anotlexz /2 step for the slow
subsystem. The resulting method is Impulse Verlet.

We now add and subtract an “extrapolation potentiiX), which can be thought of as
a computationally cheap approximationEg(X) [13]. This gives the splitting

X 0 Vv
M - [—M1VE3(X)+ MWA(X)} + [—MWEF(X) ~MWVAX) |’

Both the slow and the fast subsystems are Hamiltonian, with their respective Hamiltor
functions

Hs= Eg(X) — A(X), He =2VTMV + E(X) + A(X).

Approximating the original system by a half-step integration of the slow part, followed t
a full step integration of the fast part, and again a half-step integration of the slow part
composition of symplectic flows; hence it is symplectic. Moreover, this approximates t
original flow to second order because of the symmetry of the composition.

The simplest choice is a linear extrapolation potential, which gives rise to a const
extrapolation force, wher&(X) =ET X, VA(X) = €.

APPENDIX E: LINEAR RESONANCE FOR EXTRAPOLATION/CORRECTION

Let

ATZM)’ §=—kATk sin(ko)

0= arcco{l — 2 .
2 2 (- a4

Using the notation introduced above and definpignplicitly,

_ KATA v . kpy
VL= jg) 1Hve 1492

¢

we have

@+bt —2)y?+ (@& —b+kpy +2
1+y?

(1—a—bé&)y?+ (@t —b+kpy +1
1+ 2 '

trace Ag/cv) = traceAcg) + ¢ =

det(Ag/cv) = det(Acp) + ¢ =

The discriminant of the characteristic equation faf,cv is then

2

m(&1¢2+&21/f + @3), (E.1)

trace Acg)? — 4 - det(Acg) =

G, = (@+b&)>>0
G, = 2at(a+b) — 8(a& + b) — 2b(a + bg) + 2kp(a + be — 2)
a3 = (a& +b)? + 8(a+ bg) — 16+ k?p? + 2kp(as — by).
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An argument similar to that used for Constant Extrapolation produces the resona
condition

Teff
kAT ~ (2m + 1)% .

Again the spikes are centered around odd multiples of the effective half period.

For kAT ~mTe" we havey ~ 0 and resonance appears if and onlg4f="0. Unlike
Constant Extrapolation, this situation is possible for large valuds @he resonance at
kAt ~mTe is then part of either them — 1/2) T resonant spike or them + 1/2)T e
one.

To estimate the amplitude of the resonant Extrapolation/Correction spikes, we rem
that the analysis is complicated by tkalependency of the coefficients of the quadratic
function in (E.1), unlike in Constant Extrapolation. A rough estimate can be obtained
follows. Letky, ko, ... be an increasing sequencekd for which the corresponding’s
are uniformly boundediy'| < M, whereM is large but finite. It can be shown that the
peaks of the resonant spike for a laigeare approximatelk; p/M in height; in other
words, we expect an almost linear increase in the amplitude of the spikes. This is sim
to Impulse Verlet and in sharp contrast to Constant Extrapolation (where the spike hei
are constant).

Consider novk values satisfying

B oomr+T o y=1
— XM + — = 1.
2 4

Itcan be easily shown that for these outer si&pg:-v has a pair of complex conjugate (non-
resonant) eigenvalues, of modulus increasingHige4; this result is confirmed by the nu-
merical tests. For the asymptotic interpretationdet cos(\/A1kAT), S= sin(s/A1KAT).

In analogy to the asymptotic behavior of Constant Extrapolation, we obtain

AR cv(KAT, A1, A2) = (I + Eg/cv(AT, A2, K) AZe(KAT, A1, A2) — Eg/cv (AT, A2, K)

A A 1
AT/-\.Z
KATAp k " ZC ( /} )Lzl) S C kAT)L);Z S
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